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Abstract. Sentiment analysis models exhibit complementary strengths,
yet existing approaches lack a unified framework for effective integra-
tion. We present SentiFuse, a flexible and model-agnostic framework that
integrates heterogeneous sentiment models through a standardization
layer and multiple fusion strategies. Our approach supports decision-
level fusion, feature-level fusion, and adaptive fusion, enabling system-
atic combination of diverse models. We conduct experiments on three
large-scale social-media datasets: Crowdflower, GoEmotions, and Senti-
ment140. These experiments show that SentiFuse consistently outper-
forms individual models and naive ensembles. Feature-level fusion ach-
ieves the strongest overall effectiveness, yielding up to 4% absolute im-
provement in F1 score over the best individual model and simple av-
eraging, while adaptive fusion enhances robustness on challenging cases
such as negation, mixed emotions, and complex sentiment expressions.
These results demonstrate that systematically leveraging model comple-
mentarity yields more accurate and reliable sentiment analysis across
diverse datasets and text types.

Keywords: sentiment analysis - model fusion - text classification - nat-
ural language processing.

1 Introduction

Large Language Models (LLMs) and deep learning architectures have trans-
formed sentiment analysis by capturing semantic dependencies and contextual
nuances beyond the reach of traditional approaches. Rule-based systems such as
VADER |[15] offer interpretability and efficiency but are brittle in the presence
of sarcasm, domain-specific language, or complex modifiers. Statistical models
provide lightweight computation but cannot adequately capture sequential de-
pendencies and contextual relationships [12]. In contrast, deep learning models
excel in modeling semantics but demand large labeled datasets and risk overfit-
ting |24]. These complementary strengths and weaknesses are especially evident
in social media, where sentiment expressions are highly contextual and often
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include irony, mixed emotions, or pragmatic cues that challenge single-model
methods [22}25]. For instance, the sentence “Great, another delayed flight — ex-
actly what I needed today!” is likely to be misclassified by a lexicon-based model
as positive due to the words great and needed, whereas a context-sensitive model
could recognize the sarcastic intent. Such cases highlight both the limitations
of individual sentiment analysis approaches and the potential gains from sys-
tematically integrating heterogeneous models to leverage their complementary
perspectives.

Despite the promise of ensemble learning, existing sentiment analysis fusion
methods are typically simplistic and ad hoc. Majority voting, unweighted aver-
aging, and confidence-weighted schemes assume homogeneous base models with
compatible outputs and aligned decision boundaries |16,21]. These naive meth-
ods neglect fundamental challenges in heterogeneous model integration, such
as inconsistencies in output formats (probabilities, logits, discrete labels), dis-
parities in confidence calibration, and the lack of adaptive mechanisms that
adjust to varying linguistic complexities. To address these gaps, we propose
SentiFuse, a model-agnostic framework that integrates heterogeneous sentiment
models through standardized output processing and multiple fusion strategies.
Our work focuses on three Research Questions: Does systematic fusion out-
perform naive combination methods? (RQl), How does fusion effec-
tiveness vary across text characteristics? (RQ2), Does the framework
generalize across different model combinations? (RQ3). To this end, our
contributions are threefold.

e First, we introduce a standardization layer that unifies diverse outputs into
probability distributions, enabling integration without architectural modifi-
cations.

e Second, we design three complementary fusion strategies—decision-level fu-
sion with learned weights, feature-level fusion using meta-classification, and
adaptive fusion guided by automatically extracted text characteristics.

e Finally, we conduct a comprehensive evaluation based on three Research
Questions, demonstrating that SentiFuse improves performance over both
standalone models and traditional ensembles across diverse and complex
sentiment scenarios.

2 Related Work

Early sentiment analysis relied on statistical methods such as TF-IDF vector-
ization with traditional classifiers [4}/6}(9,/26], which were efficient but ignored
sequential dependencies and semantics. Rule-based systems like VADER [15]
and SentiWordNet [1] improved interpretability with linguistic heuristics, yet
struggled with context sensitivity and domain adaptation [5}/11}23,/29]. Deep
learning models |21/271/31,/33] addressed these issues: recurrent architectures such
as BiLSTM captured long-range dependencies [32|, while attention mechanisms
highlighted sentiment-bearing spans [34]. Transformer-based models, notably
BERT 8] and RoBERTa [1§|, achieved state-of-the-art results with bidirectional
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context encoding, though at the cost of data demands and sensitivity to domain
shifts.

Beyond single models, ensemble methods have been widely applied. Tra-
ditional approaches like bagging [3| and voting |10] improved robustness but
failed to fully exploit heterogeneous systems. More recent meta-ensembles [17]
and adaptive fusion strategies [13| dynamically weight model outputs or modal-
ities, yielding stronger results but often requiring high computational resources
or paired multimodal data. Meanwhile, the emergence of large language models
(LLMs) has shifted sentiment analysis research: studies report ChatGPT achiev-
ing competitive or superior performance in zero- and few-shot scenarios [30] com-
pared to fine-tuned transformers [19]. Cross-lingual ensembles also demonstrate
strong results by combining translation with transformer ensembles [20], though
error propagation remains a challenge. Recent surveys emphasize that many
fusion approaches still rely on static weighting and lack systematic evaluation
against simpler baselines [28|, which underscores the need for model-agnostic,
adaptive frameworks.

3 Methodology

In this study, we propose an innovative multi-model framework, SentiFuse, de-
signed to integrate multiple heterogeneous sentiment analysis models. Our pro-
posed sentiment analysis framework is composed of four interconnected compo-
nents: (1) multiple heterogeneous sentiment analysis models, (2) a standardiza-
tion layer, (3) a fusion strategy selector, and (4) sentiment classification. This
structured approach enables flexible integration and coherent combination of
sentiment predictions from diverse model types, ranging from simple lexicon-
based methods to complex language models.

Multi-model Sentiment Analysis. The first component consists of a diverse
set of sentiment models represented as:

M = My, My, ..., M,. (1)

Each model M; processes input text to produce an output O; = M;(x). Our
implementation specifically includes:

e Lexicon-based models: Estimate sentiment by aggregating word-level po-
larity from curated lexicons, typically with heuristics for intensity, positional
emphasis, and valence shifters (e.g., negation).

e Pattern-based models: Infer sentiment from the presence and strength of
predefined sentiment-bearing patterns (e.g., idioms, emoji sequences, depen-
dency templates), weighting patterns by frequency and reliability.

e Machine-learning models: Learn a mapping from engineered features (e.g.,
n-grams, TF-IDF, syntactic cues, lexicon features) to sentiment labels using
supervised classifiers (e.g., logistic regression, SVM).
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Fig. 1. Overall architecture of the proposed SentiFuse framework.

¢ Encoding models: Use deep contextual encoders (e.g., BERT, RoBERT4) to
obtain sequence representations; a pooled vector (e.g., [CLS] token) is passed
to a task-specific classifier after pretraining and fine-tuning.

We distinguish classical classifiers trained on engineered features from neural
encoding models that learn contextual representations; for classification, the en-
coder is paired with a task-specific prediction head and fine-tuned.

Standardization Layer. To facilitate seamless integration of heterogeneous
model outputs, we implement a standardization function S that converts differ-
ent model outputs into unified probability distributions over sentiment classes
as:

{Ppos s Pneg } if output is probability
S(0;) = Ls 1osl, if output is score s € [—1,1] . (2)

{0 (Upos ) , 0 (Uneg )}, if output is logits

Additionally, we define feature extraction functions ¢; (O;) specific to each
model type as:

6 (0:) = 11 (05), f2(Oi) ., fx (O], (3)

where each f; represents a feature extraction operation regarding the model type.
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Fusion Strategies. We formalize three distinct fusion methods:
e Decision-level Fusion: Combines standardized probability outputs from

each model using weighted averages defined as follows:
i1 Wi - S (0)

Fy (S(01),...,5(0,)) = Die

D i Wi 7 @

with model-specific weights w; € [0, 1].
e Feature-level Fusion: Aggregates extracted features from multiple models
into a unified vector for classification represented as follows:

Fi(S(01),-..,5(0n) =g ([¢1(01) @ ... ® ¢n (On)]) (5)

where @ indicates concatenation, ¢; is a feature mapping for model ¢, and g
is a trained meta-classifier

e Adaptive Fusion: Dynamically re-weights model contributions based on text
characteristics defined as:

Fa(l‘, S(Ol)) ey S(On)) = Zz_iiff‘z))z(f)(oi) ) (6)

where w;(z) are adaptive weights determined from textual features ¢ () (e.g.,
negation presence, text length, emotional complexity).

Sentiment Classification. The fused output is mapped to sentiment proba-
bilities by a classification function defined as follows:

C(F(S(01);---,5(0n))) = APersPess -1 Per (7)

where p,, is the predicted probability for sentiment class ¢;. The final sentiment
label L(x) is determined using a confidence threshold §. For example, if the
dataset has three types of label as follows:

positive, Ppos > Pneg +6
L(z) = { negative, pneg > Dpos +0 . (8)
neutral, otherwise

This generalized formulation allows our framework to seamlessly handle multi-
class sentiment tasks and provides greater flexibility in diverse sentiment analysis
scenarios.

Training and Adaptation. Fusion weights are trained on labeled data.
Decision-level fusion tunes weights on validation sets, while feature-level fusion
uses logistic regression with L2 regularization. Adaptive fusion adjusts weights
by text type: transformers get more weight with negation or mixed emotions,
lexicons with short texts. Models start equal and are modified by simple rules,
keeping the system efficient and easy to extend.
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4 Experiments and Results

4.1 Experiment Setup

Datasets. We evaluate SentiFuse on three sentiment datasets:

e Crowdflower US Airline Twitter (14.6k tweets): A benchmark dataset
with balanced sentiment labels (positive, negative, neutral) focusing on airline
customer experiences.

¢ GoEmotions (211k Reddit posts) |7]: A comprehensive emotion dataset from
Google, containing 28 fine-grained emotions categorized into positive, nega-
tive, and neutral sentiment classes.

e Sentiment140 (1.6M tweets) [14]: A large-scale tweet dataset for sentiment
classification, labeled as negative, neutral, positive.

All datasets undergo consistent preprocessing with text normalization and
sentiment label standardization. We apply 80-10-10 stratified splits for training,
validation, and testing.

Baseline models. To evaluate our framework, we deliberately employ a di-
verse set of sentiment analysis models that represent different methodological
paradigms:

e Classical machine learning models. We incorporate TF-IDF vectoriza-
tion combined with linear classifiers such as SVM and XGBoost. These mod-
els rely on bag-of-words style representations, which capture lexical patterns
effectively but ignore deep contextual semantics.

e Deep neural models. To represent state-of-the-art contextual embeddings,
we include BERT, RoBERTa, and DistilBERT. The versions used in the ex-
periments are uncased from Hugging Face Transformers, pretrained on English
Wikipedia and BookCorpus. No additional pretraining was performed; we fine-
tuned these models directly on the sentiment datasets. These transformers en-
code rich semantic and syntactic information, leading to strong performance
across benchmarks but at higher computational cost.

For fair comparison, we also evaluate several standard ensemble rules: simple
averaging, confidence-weighted averaging, majority voting, median averaging,
and max-confidence selection.

4.2 Research Question 1

The first research question, "Does systematic fusion outperform mnaive
combination methods?", evaluates whether structured fusion strategies pro-
vide measurable benefits over naive ensemble rules and individual models. The
fixed model pool for this analysis consists of VADER, DistilBERT, and a
TF-IDF classifier, chosen to represent lexicon-based, neural, and statistical
paradigms. We compare three categories of methods: (i) the best-performing in-
dividual model (typically DistilBERT), (ii) naive ensembles including simple av-
eraging, confidence-weighted averaging, majority voting, median averaging, and
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max-confidence selection, and (iii) structured fusion methods, namely decision-
level, feature-level, and adaptive fusion. Table [I] reports Accuracy, Precision,
Recall, F1-Score of strategies across datasets.

Table 1. Performance (percentage) of fusion strategies across datasets.

Strates ‘ Crowdflower ‘ GoEmotions ‘ Sentiment140
rategy
‘Recall Prec Acc F1 ‘Recall Prec Acc F1 ‘Recall Prec Acc F1

Best Individual 77.80 58.79 87.60 66.97|53.59 77.29 77.32 63.29|77.28 75.60 76.11 76.43
Simple Average 80.34 61.29 88.63 69.53|71.61 64.12 75.01 67.66|69.40 76.99 74.27 73.00
Confidence Weighted | 78.44 61.73 88.66 69.09|68.93 63.51 74.21 66.11|65.51 77.78 73.33 71.12
Majority Vote 70.82 69.07 90.16 69.94|59.86 74.43 77.85 66.36|53.92 79.95 70.13 64.40
Median Average 79.49 60.65 88.35 68.80|71.26 67.24 76.84 69.19|71.94 75.80 74.42 73.82
Max Confidence 77.59 61.68 88.59 68.73|67.07 62.91 73.55 64.92|62.40 77.67 72.16 69.20
Decision Fusion (Ours) [80.34 61.29 88.63 69.53|71.61 64.12 75.01 67.66|69.40 76.99 74.27 73.00
Feature Fusion (Ours) |65.54 73.99 90.71 69.51|60.46 75.70 78.49 67.23 |77.85 77.93 77.85 77.89
Adaptive Fusion (Ours)|80.34 60.22 88.25 68.84|70.95 63.43 74.47 66.98|68.27 77.25 74.02 72.48

On Crowdflower, attains the best Accuracy (90.71), with high Precision
(73.99). Majority vote yields the best F1 (69.94), slightly above feature (69.51)
and decision/simple (69.53). On GoEmotions, feature fusion gives the best
Accuracy (78.49). Interestingly, median averaging yields the best F1 (69.19),
exceeding decision/simple (67.66) and feature (67.23). On the large-scale Sen-
timent140, feature fusion is best on both Accuracy (77.85) and F1 (77.89),
outperforming the best individual (76.11/76.43). Across datasets, feature-level
fusion is the most reliable overall winner (best Acc on all three; best F1 on Sen-
timent140). We also present ROC and PR curves in Figure |2| specifically for the
Sentiment140 dataset due to its large scale (1.6M samples) and its balanced class
distribution. Feature-level fusion achieves the strongest performance with ROC-

Precision-Recall Curves ROC Curves
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Q
=
0.8 = 0.8
- ~
)
S 0.6 > 0.6
(7] =2
i) =
3] 17 P
204 — Dbest model:tfidf (AP=0.837) ﬂ? 0.4 — best_model:tfidf (AUC=0.837)
& simple_average (AP=0.830) simple_average (AUC=0.834)
— confidence_weighted (/r\P:OvSOZ) [} — confidence_weighted (AUC=0.807)|
— majority vote (AP=0.757) =1 — majority_vote (AUC=0.791)
0.2 — median_average (AP=0.821) = 0.2 — median_average (AUC=0.832)
— max_confidence (AP=0.783) = — max_confidence (AUC=0.798)
decision (AP=0.830) decision (AUC=0.834)
—— feature (AP=0.857) ‘l/r‘ — feature (AUC=0.856)
0.0 adaptive (AP=0.825) 0.0 adaptive (AUC=0.831)
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Recall False Positive Rate

Fig. 2. PR curves and ROC curves on the Sentiment140 dataset.

AUC of 0.856 and PR-AUC of 0.857, outperforming the best individual model
(AUC 0.837, PR-AUC 0.837). Decision fusion and simple averaging follow closely
(0.834 — 0.830), while majority vote and max-confidence lag behind (AUC below
0.800, PR-AUC as low as 0.757). These results confirm that structured fusion
yields superior discriminative ability and more reliable precision—recall trade-offs
than naive ensemble rules.
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4.3 Research Question 2

The second research question, "How does fusion effectiveness vary across text
characteristics?" examines whether different fusion strategies perform better on
specific types of texts. Since models have complementary strengths, such as
lexicon approaches excel on short texts while transformers capture complex se-
mantics, we hypothesize that structured fusions can adapt to text conditions
more effectively than either naive rules or single models. We then compare the
best individual model, decision fusion, adaptive fusion, and feature fusion within
each category. Figure |3| reports accuracy across the three datasets.

Crowdflower GoEmotions Sentiment140
1.0 1.0 1.0
0.8 0.8 0.8
Eo6 0.6 0.6
g, . X
I
=1
3 04 0.4 0.4
So . .
0.2 0.2 0.2
0.0 0.0 0.0
Negation Mixed Complex Short Long Negation Mixed Complex Short Long Negation Mixed Complex Short Long

Emotions Texts Texts Texts Emotions Texts Texts Texts Emotions Texts Texts Texts

B Best Individual Model I Decision Fusion B Adaptive Fusion B Feature Fusion

Fig. 3. Accuracy of proposed framework and best individual model across datasets.

On Crowdflower, feature fusion consistently outperforms the other ap-
proaches across nearly all categories. It reaches about 0.95 accuracy on negation
and nearly 1.0 on long texts, demonstrating that combining models captures sub-
tle polarity shifts and benefits from richer context. Even on short texts, where
lexicon-based methods usually excel, feature fusion attains 0.82, exceeding de-
cision (0.75), adaptive (0.76), and the best individual model (0.75). This shows
that feature-level integration can compensate for sparse signals by pooling com-
plementary features. For GoEmotions, the advantage of feature fusion is again
visible, particularly in challenging categories such as negation (0.77) and complex
texts (0.73). Short texts also favor feature fusion (0.79 vs. 0.77 for decision and
0.73 for the best individual). Interestingly, on mixed emotions, the gap between
strategies narrows, suggesting that all models find this phenomenon inherently
difficult, and fusion only partially mitigates the challenge. On long texts, all
methods converge near 1.0, reflecting that with sufficient context, both individ-
ual models and ensembles perform robustly. On the large-scale Sentiment140,
feature fusion maintains a consistent edge across categories, but the margins
are smaller than in the other datasets. It scores 0.74 on short texts versus 0.73
for the best individual, and 0.69 on complex texts versus 0.68 for decision and
adaptive fusion. This suggests that on very large datasets, strong individual
models already capture much of the available signal, and fusion strategies yield
incremental but reliable improvements.

Overall, RQ2 confirms that the effectiveness of fusion varies with text char-
acteristics. Feature fusion is most effective on negation, complex sentiment, and
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short texts, where single models struggle. Decision and adaptive fusion provide
stable performance, often close to feature fusion, but without consistently sur-
passing it. On long texts, all approaches converge, highlighting that fusion adds
the most value when input is limited or ambiguous.

4.4 Research Question 3

The third research question, "Does the framework generalize across dif-
ferent model pools?", examines whether the proposed framework remains ef-
fective when applied to different sets of heterogeneous models. Across the three
datasets, our results show that systematic fusion consistently matches or out-
performs naive ensembles, which is illustrated in Table 2] and Table

Table 2. Performance (percentage) of fusion strategies with combination of TextBlob
+ RoBERTa + SVM across datasets.

Stre ‘ Crowdflower ‘ GoEmotions ‘ Sentiment140
rategy
‘Recall Prec Acc F1 ‘Recall Prec Acc F1 ‘Recall Prec Acc F1

Simple Average 58.33 73.25 78.11 64.68|62.92 71.06 75.90 66.70|52.02 75.58 64.17 56.33
Confidence Weighted | 59.33 72.69 78.11 64.92|62.05 71.53 75.94 66.39|49.61 75.61 63.65 54.98
Majority Vote 62.83 72.65 80.43 66.91| 59.84 72.35 75.97 65.53|49.34 76.06 63.60 54.95
Median Average 60.67 73.09 79.18 66.30|61.52 71.71 75.98 66.25|52.14 75.55 64.37 56.40
Max Confidence 60.17 72.53 78.93 65.68|59.73 71.95 75.60 65.09 |45.86 76.24 62.61 52.07

Decision Fusion (Ours) | 57.00 74.18 77.89 64.27|62.65 71.37 75.75 66.26 | 51.63 75.11 63.56 56.12
Feature Fusion (Ours) |61.67 73.67 79.80 66.61|61.92 71.56 76.09 66.18 | 51.49 75.68 63.63 55.93
Adaptive Fusion (Ours)|55.50 75.83 77.39 64.13|62.06 71.99 75.96 66.16 | 50.39 75.46 63.58 55.79

Table 3. Performance (percentage) of fusion strategies with combination of AFINN +
BERT + XGBoost across datasets.

St ‘ Crowdflower ‘ GoEmotions ‘ Sentiment140
rategy

‘Recall Prec Acc F1 ‘R,ecall Prec Acc F1 ‘R,ecall Prec Acc F1
Simple Average 75.66 61.94 88.16 68.20|71.08 64.37 75.20 67.29|66.78 76.07 73.63 71.59
Confidence Weighted | 75.16 62.19 88.14 68.20|70.09 64.99 75.18 67.23|63.23 76.40 72.46 70.07
Majority Vote 71.00 67.62 89.91 69.02|62.59 72.98 77.83 66.59|56.29 78.17 70.22 65.34
Median Average 74.00 62.38 87.89 67.80|70.83 66.18 76.36 67.27|69.85 75.71 74.71 72.70
Max Confidence 73.66 62.47 88.20 67.90|69.05 64.91 75.14 66.60 | 60.55 76.89 72.06 68.38

Decision Fusion (Ours) | 75.66 61.94 88.16 68.20|71.07 64.37 75.20 67.29|66.78 76.07 73.63 71.59
Feature Fusion (Ours) |63.83 72.69 90.39 69.08| 61.10 75.97 78.59 67.39 |77.07 76.89 76.89 76.90
Adaptive Fusion (Ours)|79.16 60.62 88.27 68.51|72.52 63.67 75.18 67.82|66.44 76.89 73.49 71.36

On TextBlob + RoBERTa + SVM (Combo 2), naive ensembles produce
mixed outcomes depending on the dataset. Majority voting achieves the high-
est accuracy on Crowdflower (80.4%) and F1 (66.9%), while median averaging
performs best on GoEmotions (F1 66.3%). These outcomes highlight that naive
ensembles are sensitive to dataset conditions and fail to generalize consistently.
In contrast, the SentiFuse strategies yield more stable performance. Feature fu-
sion achieves competitive results across datasets (79.8% accuracy and 66.6% F1
on Crowdflower), while adaptive fusion reaches the highest precision on Crowd-
flower (75.8%), indicating robustness in skewed distributions. Decision fusion
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remains reliable, closely tracking simple averaging but with lower variance. On
AFINN + BERT + XGBoost (Combo 3), structured fusion demonstrates
clearer advantages. Feature fusion delivers the strongest overall balance, includ-
ing 90.4% accuracy on Crowdflower and 75.97% precision with 78.59% accuracy
on GoEmotions, outperforming both naive and individual models. Adaptive fu-
sion emphasizes recall, reaching 79.2% on Crowdflower, while decision fusion
again shows stable behavior aligned with simple averaging. On Sentiment140,
feature fusion achieves the highest overall performance (76.9% accuracy and F1),
demonstrating that structured integration maintains benefits even in large-scale
settings.

Overall, RQ3 shows that SentiFuse generalizes effectively across heteroge-
neous model fusions. While naive ensembles occasionally perform well in isolated
cases, their outcomes vary substantially across datasets. Structured methods, by
contrast, consistently enhance reliability: feature fusion excels in fine-grained
scenarios, adaptive fusion strengthens recall and robustness, and decision fusion
provides stable performance. These results highlight that the framework is not
tied to a particular model set but provides a general architecture for integrating
diverse sentiment classifiers.

5 Conclusion

In this paper, we introduced SentiFuse, a flexible and model-agnostic framework
for sentiment analysis that integrates diverse models through a unified stan-
dardization and fusion pipeline. By supporting decision-level, feature-level, and
adaptive fusion strategies, the framework improves performance across multi-
ple datasets and challenging text phenomena such as negation, mixed emotions,
and short or complex expressions. Our experiments demonstrate that no single
strategy dominates in all cases: feature-level fusion provides strong overall gains,
while adaptive and decision-level methods offer robustness in heterogeneous con-
texts. Feature-level fusion is particularly strong on categories such as negation
and mixed emotions, where complementary cues from lexicon and neural embed-
dings align. Adaptive fusion tends to generalize better across varied categories
by weighting models dynamically. These findings underline the methodological
contribution of offering a general fusion architecture that can be applied across
model families, the analytical contribution of revealing when and why certain
fusion strategies succeed on specific text types, and the practical contribution of
showing that such strategies generalize effectively across different model pools.
Together, these contributions provide a more reliable foundation for sentiment
classification and point toward broader applications where robustness and com-
plementarity are essential. While SentiFuse introduces some additional inference
cost from running multiple models, it remains lightweight: feature fusion adds
only linear concatenation overhead, and adaptive fusion requires a small meta-
classifier. Although our accuracies fluctuate around 80%, this is consistent with
prior state-of-the-art sentiment work on noisy social media text. Tweets and
Reddit posts often include sarcasm, slang, and mixed emotions, and annotator
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agreement itself is rarely above 85-90%. We expect that stronger models such
as LLaMA or Gemma, if included in the pool, would further improve individual
baselines. However, our framework is model-agnostic: fusion still helps in cases
where even large models misclassify ambiguous or sarcastic inputs. Thus, Senti-
Fuse can complement LLMs rather than compete with them. Future work will
explore more context-aware adaptive mechanisms and extend the framework to
multilingual and domain-specific settings.

Funding: This work was supported by NSF - USA CNS-2219614.
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