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Abstract—Understanding causality between real-world events
from social media is essential for situational awareness, yet
existing causal discovery methods often overlook the interplay
between semantic, spatial, and temporal contexts. We propose
CaST: Causal Discovery via Spatio-Temporal Graphs, a unified
framework for causal discovery in disaster domain that integrates
semantic similarity and spatio-temporal proximity using Large
Language Models (LLMs) pretrained on disaster datasets. CaST
constructs an event graph for each window of tweets. Each
event extracted from tweets is represented as a node embedding
enriched with its contextual semantics, geographic coordinates,
and temporal features. These event nodes are then connected to
form a spatio-temporal event graph, which is processed using
a multi-head Graph Attention Network (GAT) [1] to learn
directed causal relationships. We construct an in-house dataset
of approximately 167K disaster-related tweets collected during
Hurricane Harvey and annotated following the MAVEN-ERE
schema. Experimental results show that CaST achieves superior
performance over both traditional and state-of-the-art methods.
Ablation studies further confirm that incorporating spatial and
temporal signals substantially improves both recall and stability
during training. Overall, CaST demonstrates that integrating
spatio-temporal reasoning into event graphs enables more robust
and interpretable causal discovery in disaster-related social media
text.

Keywords—Computing Methodologies, Artificial Intelligence,
Natural Language Processing, Information Extraction

I. INTRODUCTION

Causal discovery aims to identify cause—effect relationships
among events from observational data, offering deeper insights
into how complex phenomena unfold. In disaster scenarios,
understanding causality across space and time is critical
for improving situational awareness, forecasting cascading
impacts, and supporting decision-making for emergency re-
sponse. Social media platforms such as Twitter have become
valuable data sources in this context, as they provide real-time,
fine-grained signals of unfolding disaster events, ranging from
infrastructure damage to community-level responses. These
data streams often reflect complex, interdependent phenomena
that evolve rapidly across locations and timescales. Figure 1
illustrates how disaster-related events unfold across time and
space in social media text. In this example, one tweet describes
heavy rain leading to flooding and traffic jams, while another
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Fig. 1. Example of causal relationships in disaster tweets with spatio-temporal
context. Two tweets from the same location (Houston) and close temporal
proximity (2 hours apart) contain causally related events. The green dashed
arrow illustrates the causal inference between "Heavy rain” and “Floodwaters”
across tweets, enabled by shared spatio-temporal features. Gray dashed lines
show how spatial and temporal context enriches event representations to
improve causal discovery.

later tweet reports floodwaters causing damaged cables and
power outages in the same region. Although these tweets
are posted separately, they represent a continuous chain of
disaster effects occurring within a short temporal window and
close spatial proximity. Such examples highlight the need
for spatio-temporal reasoning in causal discovery: existing
text-based approaches often capture only intra-tweet relations,
overlooking cross-tweet causal propagation that frequently
occurs in real-world disaster scenarios.

However, inferring causality from such unstructured, dy-
namic, and context-rich text remains a challenging task.
Traditional causal discovery approaches, including statistical
and graph-based models, often fail to capture the intricate
spatial and temporal dependencies that characterize real-world
disaster information. Recent advancements in Large Lan-
guage Models (LLMs) such as BERT and GPT have shown
exceptional capabilities in semantic understanding, enabling
extraction of event representations from unstructured text. Yet,
most existing LLM-based methods for causal inference focus
solely on textual relationships and ignore the spatio-temporal



interdependencies among events, limiting their ability to cap-
ture the real-world propagation patterns typical of disasters.
In particular, events such as floods causing power outages,
aftershocks triggering new collapses, or road closures leading
to rescue delays require both temporal reasoning (when events
happen) and spatial awareness (where they occur) to be
causally understood. Integrating these dimensions is therefore
essential to identify how disaster effects spread and interact.

Despite recent advances, current approaches often fall short
in integrating both spatio-temporal reasoning within a unified
causal discovery pipeline. Many graph-based models overlook
temporal dependencies or treat cross-document causality as
a secondary task, while prompt-based LLM methods, though
flexible, lack structural consistency and are prone to halluci-
nation. Likewise, methods that inject external knowledge or
event semantics often do so statically, without modeling how
events evolve and interact across time and space—an essential
aspect in domains like disaster response, where causal chains
unfold dynamically across locations and hours. In large-scale
events such as hurricanes, floods, or wildfires, understanding
where and when cascading effects occur is vital for situational
awareness and coordinated response. However, few existing
methods explicitly capture such spatio-temporal propagation
patterns in social media streams. To address these challenges,
we aim to develop a unified framework that integrates se-
mantic, spatial, and temporal knowledge into a single graph-
learning paradigm. In this framework, each event extracted
from social media text is represented as a node enriched
not only with linguistic features from LLM embeddings but
also with contextual signals derived from its spatial location
and temporal occurrence. The event graph is then constructed
and expanded along two dimensions: (i) Spatial neighbors,
capturing proximity in location, and (ii) Temporal neighbors,
capturing alignment in time. This enriched graph is subse-
quently processed using a multi-head Graph Attention Net-
work (GAT), which enables dynamic attention across spatial
and temporal relations. Through this design, CaST bridges
the gap between text-based causality and real-world disaster
dynamics, allowing the model to learn context-aware causal
representations that better reflect event evolution across time
and space. Our contributions are summarized as follows:

e We propose CaST (Causal Discovery via Spatio-
Temporal Graphs), a novel framework for causal discov-
ery that unifies spatial and temporal relationships into a
spatio-temporal event graph derived from disaster-related
social media data. Unlike prior methods that rely purely
on textual cues, CaST explicitly captures how disaster-
related events unfold across time and locations.

o We construct a large-scale dataset of approximately 167K
disaster-related tweets, annotated following the MAVEN-
ERE schema with extensions for temporal, spatial, and
causal information. This dataset enables fine-grained eval-
vation of causal inference in real-world, noisy social
media contexts.

e We assess CaST against eight strong baselines, ranging

from traditional approaches to graph-based, neural, and
prompt-based models. Results show that CaST achieves
the best balance between precision and recall, outper-
forming prior methods in both causal link identification
and generalization stability. Ablation studies further con-
firm the importance of spatial and temporal representa-
tions in enhancing causal inference.

II. RELATED WORK

A. Early Approaches for Causal Discovery

Early methods identified causal relations in text using pat-
terns and linguistic cues. Khoo et al. [2] applied manual tem-
plates such as “X leads to Y to newspaper articles to extract
cause—effect pairs. Supervised feature-based classifiers were
later introduced: Blanco et al. [3] trained a classifier on lexical
and syntactic features to detect causal relations. Researchers
also began creating evaluation datasets; the SemEval-2010
Task 8 included Cause-Effect as one of several semantic rela-
tion classes. Girju [4] developed an early question—answering
system for causal QA, using semantic parsing and WordNet
knowledge to detect causality in text. With the rise of machine
learning and larger datasets, causal extraction methods shifted
toward neural networks and external knowledge integration.
Cao et al. [5] proposed a knowledge-enriched model (LSIN)
that incorporates external graphs for event causality identifica-
tion. Their Latent Structure Induction Networks use two mod-
ules: a Descriptive Graph Induction, which pulls descriptive
attributes of events from knowledge bases, and a Relational
Graph Induction, which learns latent multi-hop connections
between events.

Data augmentation and transfer learning were also explored.
Cao et al. and Liu et al. generated synthetic causal sentences
or mined additional training examples from external corpora.
Cao et al. [5] leveraged patterns from lexical knowledge bases
(WordNet, VerbNet) to create paraphrases of causal statements
and used contrastive learning to teach a model invariant
features of causality. Neural models were further extended
to jointly model related tasks. Shen et al. [6] introduced a
prompt-based multi-task learning approach for event causality
identification. They crafted auxiliary prompt tasks that a
pretrained language model must answer about the presence
of causal cues and plausible causal links, drawing on latent
knowledge of causation in the language model. Zuo et al.
[7] present LearnDA, a dual-learning augmentation framework
for causal sentence generation. Transfer-learning strategies are
examined by Anuyah et al. [8], who show that combining
data from multiple domains improves causal relation extraction
performance. More recently, Chun et al. [9] leverage pretrained
language models (e.g., RoOBERTa, T5) for data augmentation in
event causality tasks, demonstrating benefits even under label
imbalance. These studies highlight evolving trends: beyond
vanilla supervised models, augmentation and cross-domain
transfer hold promise for improving causality extraction in
low-resource or implicit-causal settings.



B. Graph-Based and Joint Reasoning Methods

Recent state-of-the-art approaches emphasize structured rea-
soning using graphs to represent events and their relations.
Instead of treating each candidate event pair independently,
these methods model global structures where multiple causal
links interact and support logical consistency across a docu-
ment. Gao et al. [10] introduced one of the earliest structured
approaches, building an Integer Linear Programming (ILP)
framework to enforce global constraints on causal relations at
the document level. Their system identified key central events
and applied constraints such as transitivity and consistency
with discourse cues to capture coherent causal chains within
long narratives.

Following this, neural graph-based models were developed
to integrate structured reasoning directly into the model archi-
tecture. Graph Neural Networks (GNNs) became the primary
tool for this purpose. Models such as those by Phu and Nguyen
[11] and Fan et al. [12] represented each document as an event
graph, where nodes correspond to events and edges represent
potential causal or semantic relations. Through message pass-
ing, information from surrounding events, coreference links,
and discourse relations informed the prediction of causal links
within and across sentences. Liu et al. [13] extended this idea
by constructing directed causal graphs and iteratively refining
them through an iterative Learning and Identifying Framework
(iLIF), which first identified high-confidence causal links and
then updated event representations through a graph encoder
before repeating the process.

Building on these developments, Pu et al. [14] proposed
a joint framework to extract events and causal relations si-
multaneously. Their model employed a heterogeneous relation
graph that included event—event edges for causality, as well
as event—argument and argument—argument edges for shared
entities and semantic roles. Event types and words formed the
graph nodes, and a GNN captured the interactions among event
identity, arguments, and candidate causal connections. They
also introduced a multi-channel label enhancement strategy
to represent the cause and effect roles within this unified
architecture.

To enrich the semantic structure of graph-based models,
Hu et al. [15] incorporated Abstract Meaning Representation
(AMR) to provide deeper semantic context for causal infer-
ence. Sentences were converted into AMR graphs encoding the
conceptual and relational structure of events, and information
from AMR subgraphs connecting event mentions was aggre-
gated to construct a semantic reasoning graph. Their model,
SemSIn, used a GNN to integrate event-centric structures with
an LSTM-based path encoder for event-associated structures,
allowing the representation of implicit relations through un-
derlying semantic links.

C. Spatio-Temporal and Domain-Specific Causal Discovery

A special subclass of causal text mining focuses on integrat-
ing temporal and spatial information to understand when and
where events occur. Mirza and Tonelli were among the first
to jointly analyze temporal and causal relations in text [16].

They proposed a framework that links event causality with
temporal ordering, using the principle that causes generally
precede effects in time and employing temporal relations as
features for causal inference.

Liu et al. (2023) [17] introduced PPAT (Progressive Graph
Pairwise Attention Network) , which refines event pair rep-
resentations through progressive attention layers and graph-
based message passing. PPAT models causal directionality
more effectively than GCN-based methods by learning hi-
erarchical attention from token-level to event-level features.
Liu et al. (2025) [18] proposed a model that jointly learns
event causality and temporality. Their framework uses a dual-
channel neural network, where one channel identifies causal
relations between events and the other detects temporal be-
fore/after relations. The model constructs an event causality
graph in which nodes are weighted by temporal salience,
allowing temporal signals to inform causal reasoning and
providing a unified representation of event dependencies.

Spatio-temporal modeling has also been extended to
domain-specific contexts such as disaster analysis and so-
cial media monitoring. Dong et al. [19] developed a real-
time framework for extracting cascading disaster effects from
Twitter streams. Their system continuously collects posts
during disasters, applies co-word analysis to detect emerging
topics, identifies potential causal chains, and enriches them by
extracting geolocation references to visualize geographically
distributed consequences. In another domain, Lenti et al. [20]
investigated causal discovery in social movements related
to climate activism. They constructed a probabilistic causal
graph integrating Reddit discussion data with external event
information to model the factors influencing protest participa-
tion. The framework captures multi-factor causal influences,
representing relationships such as interactions with activists,
media exposure, and engagement intensity.

D. Large Language Models for Causal Discovery

Large Language Models (LLMs) such as GPT-3.5 and GPT-
4 have introduced a new direction for causal reasoning from
text. Kiciman et al. [21] evaluated these models across sev-
eral benchmarks, including pairwise causal discovery, coun-
terfactual reasoning, and event causality tasks. Their study
demonstrated that LLMs can infer causal relationships directly
from textual descriptions, generate causal graphs, and provide
natural language explanations of causal links, reflecting their
internalized commonsense knowledge acquired through large-
scale pretraining.

Subsequent research has explored combining LLMs with
traditional causal inference algorithms. Long et al. (2023)
demonstrate this by using GPT-generated causal statements
as priors or constraints for Bayesian network learners as
in NLP applications, LLMs have been employed to extract
candidate causal graphs from corpora that can later be refined
through statistical modeling or human feedback [22]. This
hybrid approach leverages the linguistic and world knowledge
capabilities of LLMs while connecting them with structured
causal frameworks. Recent work has further extended this



paradigm by integrating structured representations directly
into LLM-based reasoning. Shyalika et al. [23] incorporated
Causal Event Graphs as contextual input to LLMs to enhance
spatial-temporal event reasoning. In this setup, LLMs process
both textual and graph-based representations, combining nat-
ural language understanding with explicit relational structures
for more interpretable causal inference.

III. METHODOLOGY
A. Problem Formulation

According to Hume’s definition of causality [24], three fun-
damental conditions must hold: A causes B if (1) A precedes B
in time, (2) A and B are contiguous in space and time, and (3)
A and B co-occur or neither occurs. Building upon this philo-
sophical grounding, our framework operationalizes causality
through explicit temporal precedence, spatial proximity, and
contextual co-occurrence among detected events in disaster-
related tweets. We formalize causal discovery from disaster
tweets as an edge classification problem on a spatio-temporal
event graph G = (V,&), where nodes represent extracted
events enriched with semantic, spatial, and temporal features,
and edges denote candidate causal connections. The task is to
predict whether a directed edge e; — e; exists between two
events based on their contextual and structural representations.

B. Framework Overview

Figure 2 illustrates the overall architecture of the proposed
CaST framework. The procedural steps are organized into
three modules—Feature Extraction (Algorithm 1), Spatio-
Temporal Graph Construction (Algorithm 2), and Causal
Learning with GAT (Algorithm 3). CaST begins by extracting
event triggers, arguments, and their spatial and temporal
attributes from disaster-related tweets. These elements are
encoded into heterogeneous node representations and serve
as the basis for constructing a unified spatio-temporal event
graph. The graph incorporates semantic, spatial, and tempo-
ral relationships that link events across tweets within each
time window. Once the graph is built, the model applies a
multi-head Graph Attention Network to propagate information
across these relations and obtain context-aware event repre-
sentations. A final classifier then predicts directional causal
links between event pairs, allowing CaST to infer causal
dynamics that are grounded in both linguistic content and
spatio-temporal context.

Each tweet is processed to extract event triggers and their
arguments, along with associated spatial and temporal cues.
These elements form heterogeneous nodes: event nodes cap-
ture semantic content, while spatial and temporal nodes encode
contextual information such as location and timestamp. Before
graph learning, CaST combines these features into unified
event representations that integrate semantic, spatial, and tem-
poral signals. The spatio-temporal event graph contains nodes
for events and contextual attributes, with edges representing
semantic, spatial, and temporal relations. The Graph Attention
Network then propagates and aligns information across these
connections, enabling the model to learn dependencies that

reflect how disaster-related events unfold. Finally, a causal link
classifier determines whether a directed causal relation exists
between any event pair, producing a structured representation
of causal chains across time and space.

C. Feature Extraction

Algorithm 1 outlines the process used to extract event
triggers, arguments, and their associated spatial-temporal at-
tributes from the raw tweet stream. The steps in Algorithm 1
are implemented as follows.

Algorithm 1 Feature Extraction
Input: Tweet set T
Output: Extracted events and initial event features
1: for each tweet ¢t; € T do
2: Extract event triggers and arguments using NER and
patterns.
Obtain temporal features 7; and spatial features s;.
4: Construct initial event representations from semantic,
spatial, and temporal features.
5: end for
6: return extracted events and event representations

[95]

Given a tweet ¢; containing a sequence of tokens
{w1,ws,...,wy}, each annotated event trigger e; is encoded
into a dense representation using the CrisisTransformer model
[25]. The contextualized embedding v, is derived by com-
bining the trigger token embedding and the [CLS] token
embedding as:

Ve; = Q- Viigger + (1 — @) - VicLsy, (1

where o = 0.7 is empirically selected to balance local and
global context. Each tweet is also associated with metadata
providing temporal and spatial cues.

Temporal features t; are normalized indicators derived from
the posting timestamp:

h d m day
tl|:24777127 31:|’ (2)

where h, d, m, and day represent the hour, weekday, month,
and day components, respectively. Spatial features s; capture
both coordinate-based and text-based location signals extracted
from each tweet:

si = [g1,92, 11,12, , A, 3)

where g; and gy are binary indicators denoting the presence
of geolocation metadata (from tweet coordinates or bounding
boxes) and explicit textual location mentions, respectively. Iy
represents the normalized count of distinct location mentions
extracted from the tweet text, while (¢, \) denote the latitude
and longitude values normalized to [—1,1] by dividing by
90 and 180, respectively. When geolocation information is
missing, coordinate values are set to zero. This formulation
enables CaST to incorporate both explicit spatial references in
text and implicit geographic metadata where available.
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Fig. 2. Overview of the proposed CaST framework for causal discovery in disaster tweets. The Feature Extraction module extracts events along with triggers
and contextual attributes (spatial and temporal attributes), encodes them as heterogeneous nodes. A spatio-temporal graph is then constructed where black
edges denote contextual link (semantic, spatial, or temporal relation), and red edges indicate predicted causal links in the output. The Graph Attention Network
propagates information across these edges to learn context-aware representations that enable accurate causal link classification.

The extracted event, spatial, and temporal embeddings cor-
respond to distinct node types that form the heterogeneous
graph. Before input to the GAT model, these representations
are projected into a shared latent space and concatenated to
form unified node features:

Xej = [Vej || t’L H Si]a (4)

where Ve, by and s; denote the event, temporal, and spatial
feature vectors, respectively. This fusion ensures that each
event node encodes both semantic and contextual information,
enabling the GAT to learn richer spatio-temporal dependencies
in subsequent causal graph learning.

D. Graph Construction

Algorithm 2 details how these extracted elements are orga-
nized into a unified spatio-temporal event graph within each
temporal window.

Algorithm 2 Spatio-Temporal Graph Construction

Input: Processed tweets 7, time window w;
Output: Set of spatio-temporal graphs {G}
1: Partition tweets into chronological windows of size wy.
2: for each window do
3 Initialize graph G.
4: for each tweet ¢; in the window do
5 Add event nodes to G.
6 Link each event to its spatial and temporal nodes.
7 Add edges between events co-occurring in the
same tweet.
8: end for
9: Add G to the graph set.
10: end for
11: return {G}

The Graph Construction module transforms event repre-
sentations into a unified spatio-temporal graph that models

relationships among events, locations, and time references.
Each tweet contributes: (1) event nodes representing detected
event triggers and their arguments, (2) spatial nodes corre-
sponding to extracted geographic entities such as cities or
regions, and (3) temporal nodes denoting timestamps derived
from tweet metadata or explicit temporal expressions. These
nodes collectively encode the semantic, spatial, and temporal
characteristics of disaster-related discourse.

To preserve chronological dependencies and manage scal-
ability, CaST constructs individual graphs within a fixed
temporal window of tweets (e.g., several hours). Tweets falling
within the same window are grouped to form one graph, ensur-
ing that events close in time are contextually connected while
maintaining temporal ordering across graphs. This sliding-
window approach captures local causal dynamics and supports
incremental learning as new tweets arrive, reflecting the evolv-
ing nature of disaster events.

Edges are established to represent interdependencies among
nodes. Contextual links connect event nodes that co-occur
within the same tweet or exhibit high semantic similarity. Spa-
tial links connect events occurring in geographically proximate
regions, determined via geolocation metadata or named-entity
alignment. Temporal links connect events according to their
chronological order within each graph window, ensuring that
causal direction respects temporal precedence. This design op-
erationalizes Hume’s classical notions of causation—temporal
priority and spatial contiguity—within a data-driven frame-
work.

The resulting graph G = (V, £) is heterogeneous, where V
includes event, spatial, and temporal nodes, and £ comprises
semantic, spatial, and temporal relations. Each node v; € V is
initialized with its corresponding embedding vector (semantic
from the language model, spatial from location encoding,
and temporal from timestamp encoding). These heterogeneous
embeddings are aligned into a shared feature space and subse-



quently passed to the Graph Attention Network for relational
reasoning and causal inference. This window-based graph
construction allows CaST to model both local and evolving
causal interactions among disaster events, effectively balancing
temporal continuity and computational efficiency.

E. Causal Learning with Multi-head GAT model

Algorithm 3 summarizes the GAT-based causal learning
procedure that updates node representations and predicts di-
rectional causal links.

Algorithm 3 Causal Learning and Link Classification
Input: Graphs {G}, number of GAT layers L, number of
mini-batches B, threshold 9
Output: Predicted causal links C
1: for each mini-batch b =1 to B do
2: for each GAT layer [ =1 to L do

3: Update node representations using attention-based
message passing.

4 end for

5: Compute causal scores for candidate event pairs.

6 Update model parameters using Focal Loss.

7: end for
8: Identify causal links using threshold §.
9: return predicted causal links C

We employ a two-layer Graph Attention Network (GAT)
to model event interactions and capture causal dependencies
across spatial, temporal, and contextual relations. Given node
features x,, the GAT updates them through attention-weighted
message passing as follows:

it =5 [ S owOnd | )

ueN (v)

where N'(v) denotes the set of neighbors of node v, he’ is

the node embedding at layer [ (with hLO) =x,), W is a
trainable transformation matrix, and a,(fg is the learned atten-
tion coefficient. The nonlinearity o(-) is the ELU activation
function.

Attention coefficients are computed as:

ag)‘ = softmax,, (LeakyReLU(a—r z(vll)t)) , ©6)

where zS]& = [W(l)hg,l)HW(l)hg)} and a is a trainable atten-
tion vector. Residual connections are applied between layers
to stabilize training and maintain hierarchical consistency, as
shown in Figure 2.

After the GAT layers, the final node embeddings of event
pairs (v;,v;) are concatenated and passed into a fully con-
nected classifier to estimate causal likelihood:

h,])), (7

where fyrp(+) is a multi-layer perceptron that outputs class
logits. The resulting distribution §j;; indicates the predicted

Gij = softmax ( fyrp([h,

probability of a causal or non-causal relation between the event
pair.

The model is trained using the Focal Loss [26], which
mitigates class imbalance by down-weighting easy negatives
and emphasizing harder, misclassified causal links:

Lfocal(pt) = *O‘t(l - pt)v log(pt)7 (8)

where p; is the predicted probability corresponding to the
ground-truth class, a; is a balancing factor, and v is the
focusing parameter.

By jointly training with focal loss, CaST becomes more
sensitive to minority causal cases and effectively reduces the
impact of abundant non-causal pairs. This GAT-based causal
learner corresponds to the “Training Multi-Head GAT Model”
stage in Figure 2, integrating event-level semantics with spatial
and temporal context for robust causal detection in disaster-
related tweets.

F. Causal Link Classification

The final stage of CaST identifies directed causal relations
between event pairs represented in the constructed graph.
Each candidate pair is encoded by concatenating the learned
event embeddings, which capture both contextual information
and their structural roles within the graph. A fully connected
classifier predicts whether a causal link exists between the
two events, producing a directed causal graph that reflects
underlying disaster propagation patterns across space and time.

IV. EXPERIMENTS
A. Dataset

We conduct experiments on an in-house dataset consisting
of a total of ~167K disaster-related tweets, each annotated
with causal relations between events. The raw corpus orig-
inally contained several million tweets collected between
August 26 and August 30, 2017, corresponding to the Hur-
ricane Harvey disaster period. To construct a manageable
and chronologically consistent dataset, we applied a sampling
rate of 1:50, preserving temporal order. Relevant attributes
such as tweet text, timestamp, and location information were
filtered and stored in JSON format following the schema
shown in Figure 3. The dataset was annotated following the
MAVEN-ERE event schema [27], with minor adjustments for
our task. Named Entity Recognition (NER) and linguistic
pattern matching were first applied to extract candidate event
triggers from tweets, which were then manually verified by
two expert annotators. Annotators further examined each tweet
to label directed causal links between events, specifying the
cause—effect pairs. At the token level, a mask field marks
causal roles using I-C (inside a cause span), I-E (inside an
effect span), and O (outside any causal span). The final dataset
includes: (1) event triggers and arguments, (2) temporal and
geospatial metadata, (3) intra-tweet causal relations, and (4)
span-level causal masks. This structure enables both event-
level and edge-level causal discovery under the proposed CaST
framework.



"tweet_text": "<tweet text here>",
"tokens": ["<token_1>", "<token_2>", ".
"events": [
"id": "evt_XXX", "trigger": "<
trigger_word>", "arguments":
"<argument_1>"}1},
{"id": "evt_YYY", "trigger": "<
trigger_word>", "arguments":
"<argument_1>"1}}

P

{ "argfl ".

{ "arg_l "e.

1,
"causal_relation": {
"relation": <true_or_false>,
"pairs": [{"CAUSE": "evt_XXX",
evt_YYY"}]

"EFFECT": "

Y}l;ﬂaskﬂ: ["o", "I_C", "I_E", n
"tweet_id": "<tweet_id>",
"date_str": "<date_string>",
"date_numeric": "<unix_timestamp>",
"geolocation": "<location_string>",
"bounding_box": " (<latl>,<lonl>), (<lat2>,<
lon2>), (<lat3>,<lon3>), (<latd>,<lon4d>)"

coo]p

Fig. 3. JSON schema of the annotated disaster tweet dataset used in
CaST. Each tweet includes the identification number, detected events, causal
relations, spatial and temporal metadata, and token-level causal role masks.

Although the CaST framework is capable of modeling inter-
tweet causal dependencies through its spatio-temporal graph
design, our in-house dataset currently annotates only intra-
tweet causal relations. Consequently, this study focuses on
evaluating intra-tweet causal discovery performance, while
cross-tweet (inter-tweet) causal reasoning is left for future
work.

B. Experimental Setup

We trained the CaST framework on the disaster tweet
dataset using an 80-10-10 split for training, validation, and
testing, respectively. Each event graph was treated as a sample,
and we employed mini-batch training with a batch size of 32
and a learning rate of 0.001. The model was trained for up to
100 epochs on an NVIDIA RTX 5000 Ada Generation GPU
with 16 GB of memory. To address class imbalance between
causal and non-causal pairs, we computed class weights based
on their frequency ratio in the training data. The input feature
dimension corresponds to the concatenated spatio-temporal
embedding of each event node. The GNN backbone uses a
hidden dimension of 256, 16 attention heads, and a dropout
rate of 0.1. Model parameters were optimized using Adam,
and training was stopped early if the validation loss did not
improve for 10 consecutive epochs. The model achieving the
lowest validation loss was selected for final evaluation on the
held-out test set.

C. Baselines

We compare CaST against a range of representative base-
lines spanning classical machine learning, neural architectures,

transformer models, and graph-based causal discovery meth-
ods. To ensure a fair comparison, all baselines operate on
the same event—pair representation. For each pair of events
(e;,€;), we extract their trigger words and construct an input
sequence of the form:

trigger; [SEP] triggerj [SEP] tweet_text.

The CrisisTransformer embeddings of each event trigger are
used whenever semantic embeddings are required. Spatial and
temporal features are excluded for the baseline models to
isolate the contribution of spatio—temporal reasoning in CaST.

« Additive Noise Model (ANM) [28]. A classical statistical
causal discovery method that assumes the effect is a
nonlinear function of the cause plus independent noise.

« Random Forest (RF). We train a Random Forest clas-
sifier using the concatenated CrisisTransformer embed-
dings of (e;,e;) as features. The model uses 100 trees,
a maximum depth of 10, class_weight=balanced,
and Gini impurity. These settings follow standard practice
and were validated on the development set.

o Support Vector Machine (SVM). The SVM baseline
uses an RBF kernel with C' = 1.0 and v = 0.01. The
classifier takes the same concatenated event embeddings
as input. The model is trained on the same 70-15-15 split
as CaST.

o« BILSTM + Attention [29]. A bidirectional LSTM with
two layers and hidden size 256 is used to encode the token
sequence. An attention layer aggregates hidden states into
an event—pair representation, followed by a 2-layer MLP
classifier. We train the model for up to 15 epochs with
learning rate 10~3 and Adam optimizer, selecting the best
checkpoint based on validation F1.

o« BERT [30]. We fine-tune bert-base-uncased for
causal classification. The input sequence is tokenized
as described above, and the model pools three signals:
the [CLS] embedding, the mean embedding of event;,
and the mean embedding of event;. These three vectors
are concatenated and passed to a feed-forward classifier.
BERT is trained with AdamW, learning rate 2 x 1075,
batch size 16, and early stopping based on validation F1.

o Document-level Event Causality Identification (DECI)
[11]. A graph-based neural architecture that applies graph
convolutional layers over document-level event graphs.
We follow the hyperparameter settings reported in the
original paper: two GCN layers with hidden size 256 and
learning rate 1073,

o Progressive Graph Pairwise Attention Network
(PPAT) [17]. A neural architecture that refines event—pair
representations through progressive attention layers. We
use the authors’ implementation with default hyperpa-
rameters, including hierarchical attention and pairwise
refinement across layers.

o DAPrompt [31]. A prompt-based approach that fine-
tunes a pretrained language model using deterministic
assumption prompts. We use the recommended configu-



ration from the original paper with learning rate 3 x 10~
and batch size 16.

For all neural baselines, training is performed with early
stopping on validation F1 rather than a fixed epoch budget,
which typically results in fewer than 30 epochs. The best
model checkpoint is used for evaluation.

D. Evaluation Metrics

Framework performance was evaluated using five standard
classification metrics: Accuracy, Precision, Recall, Fl-score,
and the Area Under the ROC Curve (AUC). Accuracy mea-
sures the overall correctness of predictions, while Precision
and Recall capture the model’s ability to identify true causal
links without introducing false positives or missing actual
relations. The Fl-score, as their harmonic mean, provides
a balanced indicator of model performance under class im-
balance. AUC quantifies the trade-off between true positive
and false positive rates, reflecting the model’s discriminative
capability across different thresholds.

E. Results

1) Baseline Comparison: Table I summarizes the perfor-
mance of CaST and existing baselines on the disaster tweet
dataset. Overall, CaST achieves the best results across most
metrics, attaining 0.87 accuracy, 0.84 precision, 0.85 recall,
and 0.85 Fl-score. These consistent gains confirm the ef-
fectiveness of incorporating spatial and temporal signals into
event representations for causal discovery.

TABLE 1
PERFORMANCE COMPARISON ON THE IN-HOUSE DATASET.

Model | Acc. Prec. Rec. F1 AUC
ANM [28] 0.50 0.50 053 0.52 0.50
RF 0.71 0.65 0.69 0.65 0.68
SVM 0.63 0.63 0.68 0.60 0.68
BILSTM+Att. [29] 0.70 0.60 0.62 0.61 0.65
BERT [30] 0.79 0.74 0.81 0.75 0.89
DECI [11] 0.54 0.62 0.79 0.70 0.58
PPAT [17] 0.86 0.60 030 040 0.88
DAPrompt [31] 0.77 0.52 0.78 0.62 0.86
CaST (Ours) | 0.87 0.84 085 0.85 0.85

Among the baselines, transformer-based methods such as
BERT and DAPrompt outperform earlier neural and statistical
approaches. BERT achieves an Fl-score of 0.75 and the high-
est AUC of 0.89, indicating its strong semantic understanding
of contextual relations between event pairs. However, it lacks
explicit modeling of event occurrence in space and time, which
limits its ability to capture causal propagation patterns typical
of disaster scenarios. DAPrompt performs comparably (F1 =
0.62, AUC = 0.86) due to its use of adaptive prompting, but
its precision remains low, suggesting frequent false positives
when causal cues are implicit or ambiguous.

Graph-based models, including DECI and PPAT, demon-
strate mixed performance. DECI achieves high recall (0.79)

but low accuracy (0.54), reflecting its tendency to over-
predict causal connections. PPAT, conversely, attains the high-
est baseline accuracy (0.86) but at the cost of poor recall
(0.30), indicating that its progressive refinement captures only
clear, surface-level causality while missing more subtle links.
Traditional machine learning baselines (SVM, RF) perform
moderately well, showing that lexical and syntactic cues
can offer limited discriminative power, while ANM performs
near random due to its reliance on numerical assumptions
unsuitable for textual input. Importantly, all of the baselines
above hardly achieve a balanced trade-off between precision
and recall. Most of them tend to favor one over the other,
either missing critical causal links or introducing excessive
false positives. This imbalance indicates that existing methods
often overlook important causal information dispersed across
space and time, leading to incomplete understanding of event
propagation in disasters.

In contrast, CaST effectively balances both semantic and
structural reasoning. By embedding spatial and temporal fea-
tures directly into event representations before graph learning,
it captures dependencies that span across locations and time
intervals—an aspect particularly relevant in disaster contexts
where cascading effects often follow a spatial-temporal chain
(e.g., flooding leading to power outages). This integration
enables CaST to reduce false positives compared to BERT
and improve recall compared to PPAT, achieving robust gen-
eralization on real-world disaster narratives. Quantitatively,
CaST attains both high precision (0.84) and recall (0.85),
demonstrating a well-balanced capability to identify true
causal links without over-predicting non-causal ones. This
balance is particularly crucial for disaster response, where
false positives can mislead situational understanding and false
negatives may overlook critical event dependencies. These
results highlight that causal reasoning in social media text
benefits significantly from structured spatio-temporal context
rather than relying solely on semantic cues or static graph
reasoning. CaST’s improvements demonstrate the value of
unifying spatial, temporal, and semantic representations within
a single graph-based learning framework for disaster-related
causal discovery.

It is worth noting that the dataset is inherently imbalanced,
with causal event pairs forming only a small fraction of all
possible event combinations (approximately 1:3 in this in-
house dataset). As a result, several baseline models exhibit
relatively high accuracy but noticeably lower precision, recall,
and F1 scores. This occurs because such models are prone to
the imbalance in the data, tending to predict the majority non-
causal class more frequently. Consequently, accuracy alone can
be misleading in this setting, while F1 and AUC serve as more
reliable indicators of causal detection performance, as they
better reflect the model’s ability to identify true causal links
amid class imbalance. To further examine the contribution
of each component in CaST, we conduct an ablation study
that isolates the effects of spatial and temporal features, as
discussed in the next subsection.



F. Ablation Study

To evaluate the contribution of spatial and temporal reason-
ing in CaST, we perform a series of ablation experiments and
compare four configurations: without both spatial and temporal
components (text-only), without spatial, without temporal, and
the full model. The quantitative results are summarized in
Table II, while the corresponding learning trends are shown in
Figure 4 and Figure 5.

TABLE II
COMPARISON OF CAST VARIANTS ON THE IN-HOUSE DATASET.

Configuration \ Acc  Prec. Recall F1 AUC
w/o Spatial & Temporal | 0.81 0.79 0.78 0.79  0.81
w/o Temporal 0.83  0.80 0.79 080 0.83
w/o Spatial 0.84  0.80 0.78 079 0.82
Full (CaST) 087 0.84 0.85 085 0.85
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Fig. 4. ROC-AUC comparison of CaST variants during training.
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Fig. 5. Training and validation loss curves for CaST and its ablated variants.

Ablation results. The base variant without either compo-
nent (w/o Spatial & Temporal) shows the lowest performance
across all metrics (F1 = 0.79), underscoring that semantic
embeddings alone are insufficient for representing the dynamic
and context-dependent nature of disaster events. Introducing
spatial or temporal information individually yields measurable

improvements of about 1-2% across most metrics, indicating
that each dimension contributes complementary information
to causal reasoning. The model without temporal informa-
tion (W/o Temporal) performs slightly worse than the one
without spatial cues (W/o Spatial), which aligns with the
principle that causal relationships often follow a chronolog-
ical sequence—events that occur earlier are more likely to
cause later ones. Temporal modeling thus enhances recall by
identifying ordered event dependencies, while spatial modeling
strengthens precision by filtering unrelated events that may co-
occur temporally but occur in distinct geographic regions.

When both spatial and temporal dimensions are integrated,
the full CaST model achieves the highest overall performance
(Acc = 0.87, F1 = 0.85, AUC = 0.85), showing a balanced
trade-off between precision and recall. This balanced improve-
ment again highlights the synergy between spatial proximity
and temporal progression: together they enable the model to
capture realistic causal propagation patterns that unfold over
space and time during disasters. These findings affirm that
causal reasoning in the disaster domain cannot rely solely
on semantic cues or pairwise correlations but must jointly
encode spatio-temporal dependencies to achieve robust and
interpretable causal discovery.

Training Stability and Generalization Trends. Figure
4 compares the validation ROC-AUC of all configurations
across training epochs. The full CaST model consistently
outperforms its ablated counterparts, with the performance gap
widening steadily after around 40 epochs. This trend indicates
that spatial and temporal cues provide complementary context
that strengthens causal discrimination as training progresses.
In contrast, models lacking these features tend to plateau
earlier, suggesting limited capacity to capture long-range or
cross-event dependencies. To further understand this behavior,
Figure 5 examines the convergence dynamics across config-
urations. The full CaST variant not only achieves the lowest
training loss but also converges more smoothly, while the ab-
lated models exhibit minor oscillations, indicating overfitting
and unstable optimization. This stability implies that spatio-
temporal information acts as a structural regularizer, guiding
the model to learn more coherent event dependencies across
time and space.

V. CONCLUSION

This paper presented CaST, a novel framework for causal
discovery via spatio-temporal graphs in disaster-related tweets.
Motivated by the need to understand how disaster effects
propagate across regions and time, CaST unifies linguistic,
spatial, and temporal cues into a single event-centric graph
structure. The framework encodes contextual, temporal, and
location-aware dependencies between events extracted from
social media messages and learns to infer causal relations
through a multi-head Graph Attention Network (GAT). Unlike
prior text-only or static graph approaches, CaST explicitly
models the dynamic and multi-dimensional nature of dis-
aster events. Each event representation integrates semantic
embeddings with temporal ordering and geolocation features,



allowing the network to reason over evolving causal chains.
The incorporation of focal loss further enhances the model’s
robustness under severe class imbalance, emphasizing hard-
to-detect causal links that are often overlooked in large-scale
social datasets. Extensive experiments on our in-house dataset
of 167K disaster tweets show that CaST achieves consistent
improvements over state-of-the-art baselines, with superior F1
and AUC scores. In future work, we aim to explore how
external or domain-specific knowledge can be leveraged to
enrich event representations and improve causal inference.
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